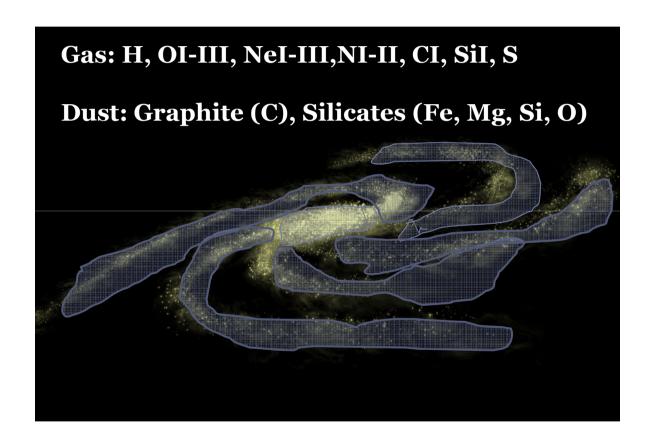
The ISM seen at unprecedented resolution

Elisa Costantini (SRON)

C. Pinto, C. de Vries, J. Kaastra (SRON)

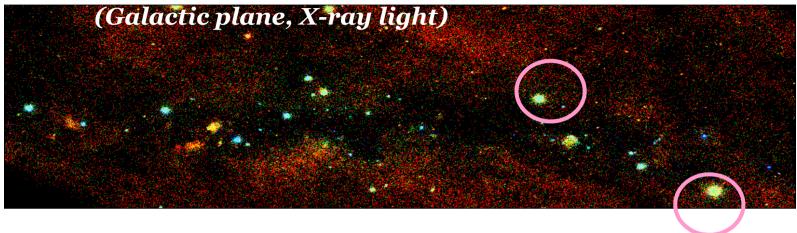
Interstellar medium (dust and gas)


Stellar evolution

Metals (AGB and RGB stars,SN)

ISM (reservoir for stars and planets)

Cold phase


Why study the ISM in the X-rays

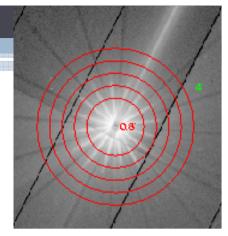
- o Gas phase: N, O, Fe, Ne, Mg, Si
- O Dust: O (0.54keV), Fe (0.7-7.1keV), Mg (1.3keV),
 Si(1.87keV)→ all constituents of silicates!
- Dust: prominent iron features (Fe L and K-edge), absent in IR band
- Element depletion is straightforward to determine
- both scattering and absorption can be simultaneously studied
- XRB are used as background light → mapping all the galactic plane

How to proceed?

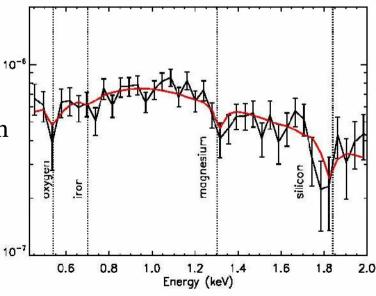
- Dust and gas absorb the X-ray radiation →
 - High resolution X-ray spectroscopy
 - e.g. Juett+03, CygX-2 (EC+05), Crab (Kaastra+09), CygX-1 (Lee+09), GS 1826-238, (Pinto+10)
 - Laboratory measurements to sample all likely species present in the ISM
 - (e.g. Lee+05,09, deVries, EC+11 in prep)
- Dust scatters the X-ray radiation \rightarrow
 - Imaging spectroscopy of dust scattering halos
 - e.g. Cyg X-2 (EC+05), GX5-1 (Smith, Dame, EC+06), Tiengo+10

Dust scattering in a nutshell

- Small scattering angle
- Halo extension: several arcmin.
- Halo energy: < 2 keV but in exceptional cases up to 6 keV
- In one observation absorption+scattering

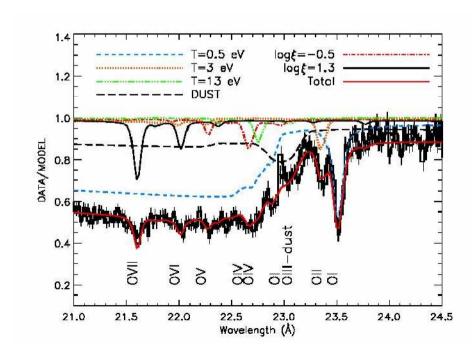

Dust scattering

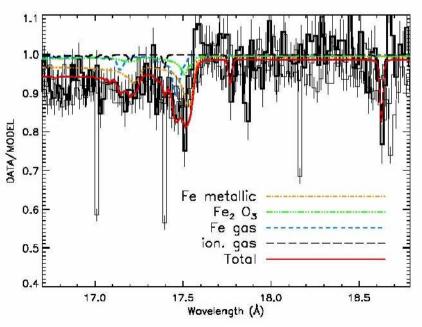
Methods:


- surface brightness profile at one energy
- → constraints on dust distribution on the line of sight & grain size distribution
- •spectrum at one distance (normalized by the source spectrum)
- → Dust contribution can be isolated (i.e. gas does not scatter)
- → Chemistry of the dust

Scattering: the case of Cyg X-2

- spectrum at one distance (normalized by the source spectrum)
- → Dust contribution can be isolated (i.e. gas does not scatter)
- → Chemistry of the dust
- First evidence of the dust spectroscopical signatures in Cyg X-2 (O, Mg, Si)
- \rightarrow Mg:Fe=5:2 (\rightarrow Fe-poor silicates!)


→Scattering by dust (spectroscopy+imaging) can provide a precious tool to study distribution and composition of dust grains.



(Cyg X-2, Costantini+05

Absorption

- optimal view of O and Fe
- → Fe is 90% and O 20% in dust
- → Mg-rich silicates (rather than Fe-rich)
- → Metallic iron + traces of oxydes

(Costantini+11 in prep.

Are we detecting GEMS?


GEMS= glass with embedded metal and sulphides (e.g. Bradley+04)

interplanetary origin, but some of them do have ISM origin → invoked as prototype of a classical silicate

Crystal olivine, pyroxene With Mg Cosmic rays+radiation FeS

 \longrightarrow Sulfur evaporation \longrightarrow GEMS

Glassy structure +

Implications

- Status of the art: silicates have Mg:Fe~1, mainly based on the modeling of the 10micron emission feature (*Li&Draine 01*)
- Alternatively: Mg:Fe~5:2 (Min+o7,EC+o5) → room for a "GEMS" composition

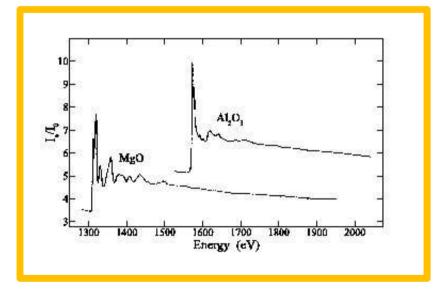
X-rays can be (and become even more) a powerful and competitive tool to solve crucial issues on ISM

Absorption near the edge

XAFS: oscillatory absorption features due to the interaction of the photoelectron wave with the others from nearby atoms.

XANES (Xray Absorption Near Edge Structure)

+ EXAFS (Extended X-ray absorption fine structure)

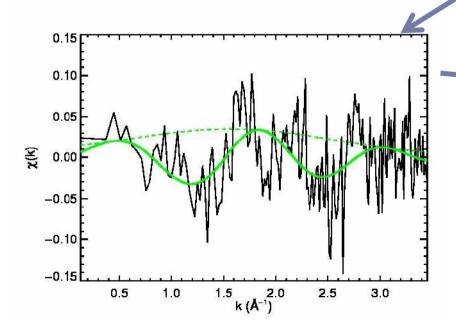

What do we learn from XAFS?

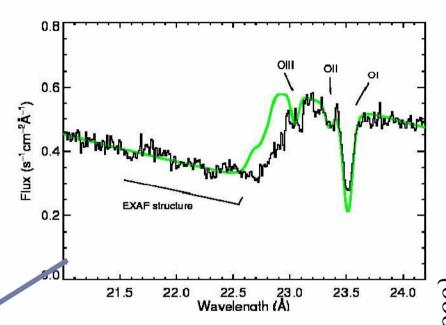
Energy of the peaks

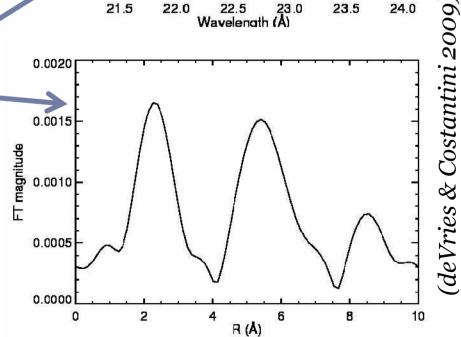
→ Electron distance from the nucleus

Intensity and number of the peaks

→ Complexity of the compound



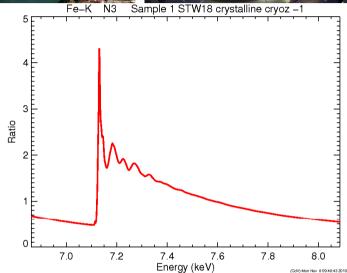

Sco X-1


RGS observations with tot exp=73ks Spectrum cleaned from bad pixels

EXAFS detected for the first time
→Tentative identification with ice

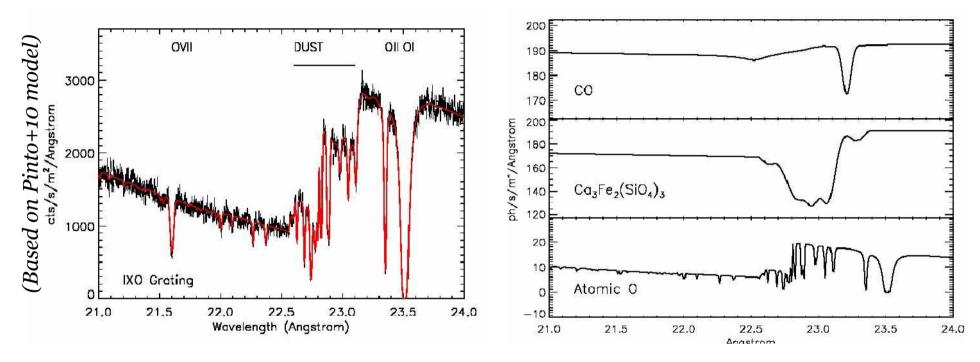
→ Do we have a complete data base?

Lab measurements

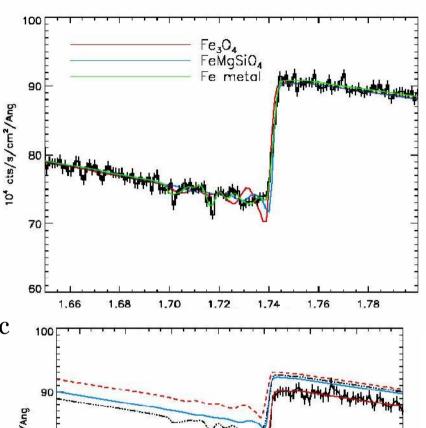

- New laboratory measurments (syncrotron+electron-microscope)
 - Focusing on:
 - silicates
 - e.g. different Mg:Fe ratios in silicates, sulfates etc
 - amorphous compounds
 - Sampling of the whole X-ray spectrum for each species (O, FeL, FeK, Mg, Si and S)

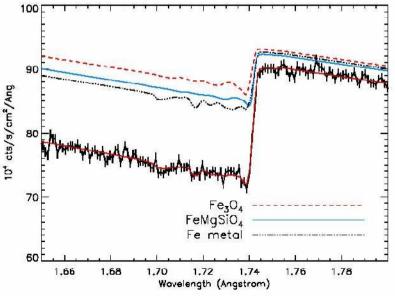
First measurements → Fe K edge @7.1 keV Significant difference between amorphous and crystalline form of the same compound

The resolution of the lab measurements is 0.8-3 eV


This work is complementary to the xafs.org data base (e.g. Lee+09)

The oxygen edge (IXO grating)

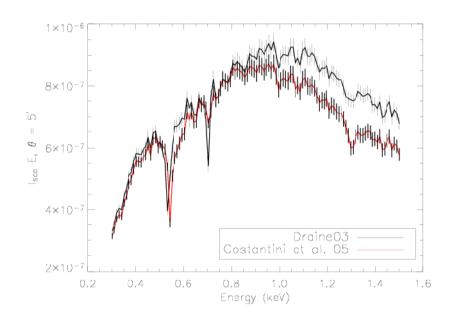



- Absorption by dust compounds produces broader and smeared features. Depending on the electrical field in the compound, the features show different shapes, energy shift, and most of all a different set of EXAFS.
- It is crucial to disentangle the contribution of atomic gas.

Iron K edge

Only absorbed sources (N_H>8x10²²cm⁻²)

- → Handful of galactic sources
- Important to probe metallicity close to The Galactic Center.
- Template for highly obscured extragalactic objects


IXO imaging+spectroscopy

The IXO outer field of view (to 5'x5') view of dust.

The scattering halos extend to several arcmin

Faint emission (integrated flux ≤10¹¹ cgs)

→ Differentiation among different models

Conclusions

- X-rays have a great potential in the study of the ISM:
 - Complementary to IR
 - Dust features shows up in different ways (e.g. scattering & absorption)
- The breakthrough can be achieved only by mean of improved spectroscopical capabilities (both in the soft and hard band).